- линейный многочлен
- ліні́йний багаточле́н
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
Многочлен Лагранжа — Интерполяционный многочлен Лагранжа многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для n + 1 пар чисел , где все xi различны, существует единственный многочлен L(x) степени не более n, для которого L(xi) = yi.… … Википедия
Линейный регистр сдвига с обратной связью — Linear feedback shift register (LFSR линейный регистр сдвига с обратной связью) один из методов генерации псевдослучайных чисел. Сдвиговый регистр с обратной связью состоит из двух частей: сдвигового регистра и функции обратной связи … Википедия
Многочлен — полином, выражение вида Axkyl…..wm + Bxnyp…..wq + …… + Dxrts…..wt, где х, у, ..., w переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней целые неотрицательные числа) постоянные. Отдельные… … Большая советская энциклопедия
Интерполяционный многочлен Лагранжа — многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для пар чисел , где все различны, существует единственный многочлен степени не более , для которого . В простейшем случае ( … Википедия
Интерполяционная формула Лагранжа — Интерполяционный многочлен Лагранжа многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для n + 1 пар чисел , где все xi различны, существует единственный многочлен L(x) степени не более n, для которого L(xi) = yi.… … Википедия
Лагранжа полином — Интерполяционный многочлен Лагранжа многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для n + 1 пар чисел , где все xi различны, существует единственный многочлен L(x) степени не более n, для которого L(xi) = yi.… … Википедия
Полином Лагранжа — Интерполяционный многочлен Лагранжа многочлен минимальной степени, принимающий данные значения в данном наборе точек. Для n + 1 пар чисел , где все xi различны, существует единственный многочлен L(x) степени не более n, для которого L(xi) = yi.… … Википедия
Код Рида — Коды Рида Соломона (англ. Reed–Solomon codes) недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида Соломона,… … Википедия
ИНТЕРПОЛИРОВАНИЕ — в вычислительной математике способ приближенного или точного нахождения какой либо величины по известным отдельным значениям этой же или других величин, связанных с ней. На основе И. построен ряд приближенных методов решения математич. задач.… … Математическая энциклопедия
Поточный шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к … Википедия
Код коррекции ошибок Рида-Соломона — Коды Рида Соломона недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида Соломона, работающие с байтами (октетами). Код… … Википедия